Python教程
资源名称:数据科学导论 Python语言实现 完整pdf 第1章 新手上路11.1 数据科学与Python简介11.2 Python的安装21.2.1 Python 2还是Python 331.2.2 分步安装31.2.3 Python核心工具包一瞥41.2.4 工具包的安装71.2.5 工具包升级91.3 科学计算发行版91.3.1 Anaconda101.3.2 Enthought Canopy101.3.3 PythonXY101.3.4 WinPython101.4 IPython简介101.4.1 IPython Notebook121.4.2 本书使用的数据集和代码181.5 小结25第2章 数据改写262.1 数据科学过程262.2 使用pandas进行数据加载与预处理272.2.1 数据快捷加载272.2.2 处理问题数据302.2.3 处理大数据集322.2.4 访问其他数据格式362.2.5 数据预处理372.2.6 数据选择392.3 使用分类数据和文本数据412.4 使用NumPy进行数据处理492.4.1 NumPy中的N维数组492.4.2 NumPy ndarray对象基础502.5 创建NumPy数组502.5.1 从列表到一维数组502.5.2 控制内存大小512.5.3 异构列表522.5.4 从列表到多维数组532.5.5 改变数组大小542.5.6 利用NumPy函数生成数组562.5.7 直接从文件中获得数组572.5.8 从pandas提取数据572.6 NumPy快速操作和计算582.6.1 矩阵运算602.6.2 NumPy数组切片和索引612.6.3 NumPy数组堆叠632.7 小结65第3章 数据科学流程663.1 EDA简介663.2 特征创建703.3 维数约简723.3.1 协方差矩阵723.3.2 主成分分析733.3.3 一种用于大数据的PCA变型—Randomized PCA763.3.4 潜在因素分析773.3.5 线性判别分析773.3.6 潜在语义分析783.3.7 独立成分分析783.3.8 核主成分分析783.3.9 受限玻耳兹曼机803.4 异常检测和处理813.4.1 单变量异常检测823.4.2 EllipticEnvelope833.4.3 OneClassSVM873.5 评分函数903.5.1 多标号分类903.5.2 二值分类923.5.3 回归93 资源截图: